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Plasma oscillations-what is plasma?
Plasma is simply an ionized or electrically charged gas, and is often described as the 
fourth state of matter, i.e. when energy is added to a solid (first state) it becomes a 
liquid (second state); with more added energy it becomes a gas (third state) and when 
further energy is added it eventually disassociates to become a plasma.

2https://tetronics.com/our-technology/what-is-plasma/
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Plasma oscillation : the ionosphere
•The ionosphere is defined as the layer of the Earth's 
atmosphere ionized by solar and cosmic radiation. It lies 
75-1000 km above the Earth.

•Because of the high energy from the Sun and from 
cosmic rays, the atoms in this area have been stripped of 
one or more of their electrons, or “ionized,” and are 
therefore positively charged. The ionized electrons 
behave as free particles. The particles are in the plasma 
state.

•The ionosphere influences radio propagation to distant 
places on the Earth, and between satellites and Earth.

3http://solar-center.stanford.edu/SID/activities/ionosphere.html

http://solar-center.stanford.edu/SID/activities/ionosphere.html


Plasma oscillations : Plasma characteristics

•The plasma is overall neutral, i.e., the number density of the electrons and ions are the same.

4
http://homepage.physics.uiowa.edu/~rmerlino/129Fall12/29_129_Plasma_oscillations.pdf

Note the number density refers an amount of particle in any volume.

The plasma 

volume is 

given as l3.

http://homepage.physics.uiowa.edu/~rmerlino/129Fall12/29_129_Plasma_oscillations.pdf


Plasma oscillation : the analysis
•The positive region on the left side and the negative region on the right side can be 
considered as two parallel infinite charged planes with a thickness of x.
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Electric field between two charge planes : 𝐸 =
𝑄

𝜀0𝐴
=
𝑒𝑛𝑒𝐴𝑥

𝜀0𝐴
=
𝑒𝑛𝑒𝑥

𝜀0
where 𝑄 is the total charge in the slabs, 𝑛𝑒 is the number density in m−3

and 𝑒 is an electron charge.

The restoring force per unit area on the electrons 𝐹 = −𝑒𝑛𝑒𝑙
3 ⋅

𝑒𝑛𝑒𝑥

𝜀0
,

The equation of motion on the electrons is written as 𝑚𝑒 ሷ𝑥 +
𝑒2𝑛𝑒
𝜀0

𝑥 = 0,

This is a standard form of simple harmonic oscillator.

The angular frequency known as plasma frequency is found to be 𝜔𝑝 =
𝑒2𝑛𝑒
𝑚𝜀0

.



Plasma frequency and ionosphere
•The ionosphere is what we term a weak plasma, as 
only one percent of the neutral atoms in the upper 
atmosphere are ionized. Traces of ionization exist 
from about 80 km to 1000 km in altitude, with the 
peak ionization occurring around an altitude of 300 
km. The maximum ionization can vary from about 
1010 to 1013 electrons per cubic meter.

From 
https://spaceacademy.net.au/env/spwx/raiono.htm

•Determine the range of the plasma frequency!

•Note : Only radio waves with frequencies 
significantly higher than this  plasma frequency can 
propagate through the plasma. The lower frequency 
can bounce off the ionosphere.
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https://spaceacademy.net.au/env/spwx/raiono.htm


Phase space
•In classical mechanics, the phase space is the space of all possible states of a system;
the state of a mechanical system is defined by the constituent positions  and velocities 
or momenta.

•The horizontal coordinate represents the position x while the vertical coordinate 
represents the velocity v.

•The future state of motion of such a particle is completely specified if its positon and 
velocity are known simultaneously.

•The trajectory of these points in phase space represents the complete time history of 
the particle.
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Simple harmonic oscillator : no damping force

•A general solution for a simple harmonic motion such as a simple pendulum may be 
written as

•The corresponding velocity is found to be 

•The trajectory of the oscillator in the phase space becomes

•The motion repeats itself, a consequence of the conservation of the total energy of the 
harmonic oscillator.
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Phase space diagram for undamped oscillator

http://www.acs.psu.edu/drussell/Demos/phase-diagram/phase-diagram.html

• An object undamped oscillating 

back and forth along x axis

• Position x(t) (leads/lags)

velocity v(t) by …..rad

• The phase diagram plot (phase 

space) is a combined plot of 

x(t) and v(t) giving a clockwise 

ellipse.

• What happens when the 

amplitude of the motion is 

gradually reduced?

2



http://teacher.pas.rochester.edu/PHY235/LectureNotes/Chapter03/Chapter03.htm

http://teacher.pas.rochester.edu/PHY235/LectureNotes/Chapter03/Chapter03.htm
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Phase space diagram for (lightly) damped oscillator

http://www.acs.psu.edu/drussell/Demos/phase-diagram/phase-diagram.html

• The oscillator loses 

energy during each 

cycle.

• x(t) and v(t) 

exponentially decrease 

in amplitude as time 

proceeds.

• In classical mechanics, 

this phase space  

described as an 

"attractor" .



Damped simple harmonic motion
•Equation of motion

•General solution for the differential equation

•Where t = time and C1, C2 are arbitrary constants.

0mx rx sx+ + =
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Three possible conditions
(1) Heavy damping :

(2) Critically damping: 

(3) Lightly damping: 

12

2 24r m s m

2 24r m s m=

2 24r m s m
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rt m i t i t s r
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Displacement as function of time for 

one-dimensional damped oscillator

https://www.quora.com/What-is-damping-ratio

https://www.quora.com/What-is-damping-ratio


Heavy damping
•To illustrate the behavior of the heavy damping (over damping), the 
displacement x(t) can be rewritten as

•Where

•This represents non-oscillating behavior.
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( )cosh sinhptx e F qt G qt−= +

1
2 2

2

1 2 1 2
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,
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p q

m mm

F C C G C C

 
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 
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http://calculus.seas.upenn.edu/?n=Main.ComputingTaylorSeries



Derivation of the heavy damping 
displacement x
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Heavy damping graph
•Given an initial condition x(t=0) = 0.

•The displacement x(t) is written as

x(t) = ………………………………….

•The graph returns to zero displacement 
quite slowly without oscillating about 
its equilibrium position.
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Critically damping
•Under the critically damping, the displacement becomes

•Where A is a constant length and B is a given velocity which depends on the 
boundary conditions.

•Suppose a critical damping system 

has zero displacement at t = 0 and receives 

an impulse which gives it an initial velocity V. 

Determine the maximum displacement.

•Also the motion is non-oscillatory.
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( ) ptx A Bt e−= +



Comparison between heavy damping and 
critical damping

•Heavy damping of a damped 
oscillator will cause it to approach zero 
amplitude more slowly than for the case 
of critical damping.

•Critical damping is of practical 
importance in mechanical oscillators 
which experience sudden impulses and 
required to return to displacement in 
minimum time. 
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Lightly damping
•The behavior of the lightly damping 
oscillating system is described by

•The amplitude of the oscillator decays 
exponentially with time according to 

•The damping coefficient r controls how fast 
the oscillating system comes to rest.
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Analysis of the lightly damping displacement

•Referring to

•The bracket has the dimensions of frequency and can be written as

• and  = frequency of ideal simple harmonic frequency (no damping!)

•Therefore,                                          ; provided that  

•A and  are constants which depend on the motion at t = 0.

•This lightly damping oscillation can then be compared to the simple harmonic oscillation.
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Derivation of lightly damping 
displacement x
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Differences between the undamped 
oscillation and underdamped oscillation
•Recall, the undamped oscillatory displacement : 

•The underdamped oscillatory displacement :

•There are two difference : (1) the presence of the real exponential factor leading 
to a gradual death of oscillations and (2) the underdamped oscillator’s angular 
frequency. 

•The underdamped oscillator vibrates a little more slowly than does the undamped 
oscillator.

•The period of underdamped oscillator is given by  
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Energy Consideration
•The total energy of the damped harmonic oscillator is given by

•Differentiate the total energy with respect to t : 

•From the equation of motion of the damped oscillation :

•The time rate of change of total energy is found to be the product of the damping 
force and the velocity

•Because this always either zero (undamped) or negative (underdamped), the 
total energy continually decreases.
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Damping ratio
•Damping Ratio ( = zeta) is dimensionless parameter which describes how an 
oscillating or vibrating body comes to rest.

23https://www.quora.com/What-is-damping-ratio



What is  the damping ratio ?

•The damping ratio gives the level of damping in a system relative to critical damping.

• The damping ratio can be defined as the ratio of the damping coefficient in the system's 
differential equation to the critical damping coefficient.

•Example 1 : A spring-mass damper system has mass of 100 kg, stiffness of 3000 N/m 
and damping coefficient of 300 kg/s. Calculate the undamped natural frequency, the 
damping ratio and the damped natural frequency. Does the system oscillate?

24



solution
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Values for describing the damping of 
an oscillator
•Three different values are used to describe the behavior of a damped 
oscillator.

•They are composed of  (1) Logarithmic decrement, (2) Relaxation 
time and (3) Quality Factor or Q-Value.

•Recall from the solution of a damped oscillation, the exponential 
decay factor exp(-rt/2m) expresses the rates at which the amplitude 
and energy is reduced.
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Logarithmic decrement (1)
• This value represents the rate at which the amplitude decreases with time.

•Suppose the expression of the lightly damped oscillation,

•Given  = /2   and at t = 0, x = A0.

• The lightly damped can be described by

•The behavior is shown as ------------->   
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( )2 sinrt mx Ae t − = +

( )2
0 cosrt mx A e t− =

Amplitude after 1st period

Amplitude after 2nd period



•From the graph in the previous slide, the amplitude at nth period can be written as

•For example 

•Notice that  

•The logarithmic decrement 
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Example 2
The frequency of   a damped harmonic oscillator is one-half the frequency of the same 
oscillator with no damping. Find the ratio of the maxima of successive oscillations.
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Example 3
Determination of logarithmic decrement

30https://www.quora.com/What-is-the-use-of-logarithmic-decrement

• Determine the logarithmic decrement  from the graph.

• Given the relationship between the  and the damping 

ratio  as follows,

𝜁 =
1

1 + Τ2𝜋 𝛿 2

calculate the damping ratio and discuss the result.



Solution 

31https://www.quora.com/What-is-the-use-of-logarithmic-decrement

Damping ratio

The value corresponds to 

the underdamping system.

0.9

0.2
0.1

1.3

The damping coefficient can be 

determined experimentally via 

the logarithmic decrement.



Relaxation time
•This expresses the damping effect on the motion in terms of the time 
taken by the amplitude to decrease by a factor of ((1/e) = 0.368) of its 
original amplitude; e = 2.718.

•The relaxation time or modulus of decay is denoted as .

•From the expression   

•The relaxation time is a measure of how rapidly the motion is damped 
out by friction. The higher the value of r, the shorter the relaxation time.
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Quality Factor or Q-Value (1)
•The reduction of the total energy of the damped oscillator depends on the 
exponential decay factor given by

•The time for the energy E to decay to E0e
-1 is given by t = m/r. 

•During this time, the oscillator will have vibrated through              .

•The ratio is defined as the quality factor                          .

•This expresses the number of radians through which the damped system 
oscillates as its energy decays by a factor of 1/e.
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rt mE E e−=

m r

Q m r=



•The rate of energy loss is given as dE/dt where E = E0exp(-rt/m).

•If a time interval corresponding to the energy decay is given by t’ (equivalent 
to the period of oscillation), the energy loss becomes  -E = (dE/dt)t’.

•Because dE/dt = (-r/m)E0e
-rt/m and 

• This leads to 

•In summary, Q is a measure of the rate at which an oscillator loses energy.
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Quality Factor or Q-Value (2)

Q m r=

energy stored in system

energy lost per cycle 2

E Q

E 
= =
−

=



Analysis of the Q value
•The amplitude decay follows exp(-r/2m)t.

•Since energy  amplitude squared, the decay term becomes exp(-r/m)t.

•The time taken for energy to change from Eoexp(-r/2m)t to Eoexp(-1) is found to be m/r.

•Since over one period ’ corresponding to  2 redians change, 

for m/r  the radian change becomes (2/’)(m/r) = ’m/r. This quantity is known as Q value.

•Now, if we consider the rate of energy change dE/dt = (-r/m)Eoexp(-r/2m)t = (-r/m)E.

•If the time interval dt is chosen to be ’, dE becomes E (energy loss per cycle) and E becomes a 
stored energy. 

•Therefore, E/-E=m/(r’). And due to Q = ’m/r, E/-E=Q/2.

•The Q value expresses the ratio of the stored energy in an oscillator to the energy lost per cycle.
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Example 4
The frequency of a damped simple harmonic oscillator is given by

′2 =
𝑠

𝑚
−

𝑟2

4𝑚2=0
2 −

𝑟2

4𝑚2

(a) If 0
2 − ′2=10−6 0

2 , determine quality factor Q and logarithmic decrement .

(b) If 0 = 106 and 𝑚 = 10−10 kg, determine the stiffness of the system and the resistive 
constant r.

(c) If the maximum displacement at t = 0 is 10-2 m. Determine the energy of the system and time 
taken to decay to 1/e of this value.

(d) Show that the energy loss in the first cycle is 2𝜋 × 10−5 J.
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Solution
(a) ∵ 0

2 − ′2=10−6 0
2, ∴ Τ𝑚 𝑟 = Τ103 2𝜔0 . We also found that 𝜔′ ≈ 𝜔0 .

Therefore, quality factor 𝑄 =
𝜔′𝑚

𝑟
=  

𝜔0𝑚

𝑟
= 500.

The logarithmic decrement  𝛿 =
𝑟

2𝑚
𝜏′ =

𝑟

2𝑚

2𝜋

𝜔′ = 
𝑟

2𝑚

2𝜋

𝜔0
= 

𝜋

500

(b)  From  𝑠 = Τ0
2 𝑚 = 100  N/m    and   𝑟 =

𝛿

2𝜋
2𝑚 𝜔0= 2  10-7 Ns/m

(c)  Energy of the system at t = 0 : 
1

2
𝑠𝐴0

2 = 5  10-3 J

Time to decay by 1/e :  𝑡 = Τ𝑚 𝑟 = 0.5 ms

(d)  From 
𝑄

2
=

𝐸

∆𝐸
; ∴ ∆𝐸 = 2𝜋 × 10−5 J
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Homework #2
1. Show that an overdamped oscillator can cross the equilibrium point one time at most.

2. Show that the damping ratio  is related to the logarithmic decrement via the following 

relationship:     𝜁 =
𝛿

4𝜋2+𝛿2

3. Show that the quality factor of an electrical LCR series is Q = 0 Τ𝐿 𝑅 where  𝜔0 = Τ1 𝐿𝐶
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